Desktop

Oswald Teichmüller ist heute für zwei Dinge bekannt: die Teichmüller-Theorie, zu der wir vorhin einen Artikel geschrieben hatten, und die „Deutsche Mathematik“, einen politischen Kampfbegriff der 30er Jahre. Um die Absurdität des letzteren aufzuzeigen, genügt im Grunde schon ein kurzer Blick auf Teichmüllers wissenschaftliche Biographie. Oswald Teichmüller war in einem Wintersportort groß geworden, in der…

Bernhard Riemann hat die später nach ihm benannten Riemannschen Flächen 1851 in seiner Dissertation als natürliche Definitionsbereiche mehrwertiger holomorpher Funktionen eingeführt. Er veranschaulichte sie als verzweigte Überlagerungen über der projektiven Gerade CP1. In seiner Arbeit über abelsche Funktionen 1857 fragte er nach der birationalen Klassifikation komplexer Kurven – das ist äquivalent zur Klassifikation Riemannscher Flächen…

xkcd erörtert in seiner neuesten Zeichnung, welche mathematischen Symbole nützlich für eine bewaffnete Auseinandersetzung wären. Bevorzugt werden solche mit großer Reichweite und spitzen Enden. In dieser Tabelle wird die Nützlichkeit der einzelnen Symbole ausführlicher begründet. Auseinandersetzungen zwischen Mathematikern sind nicht so selten, auch wenn sie in der Regel eher mit Symbolen als mit Waffen ausgetragen…

Die Laplace-Gleichung Δu=0 im R3 beschreibt in der Physik das elektrostatische Potential im ladungsfreien Raum. Die Lösungen dieser Gleichung (auf einem beliebigen Rn) heißen harmonische Funktionen. Die harmonischen Funktionen auf dem R2 sind in der Funktionentheorie von Bedeutung, etwa beim Beweis des Riemannschen Abbildungssatzes. Die Real- und Imaginärteile komplex differenzierbarer Funktionen sind harmonisch und umgekehrt…

Coronabedingt soll man heuer einen Mindestabstand von d=1,5 Metern einhalten. Für den Mathematiker wirft das die Frage auf, wie sich Menschen positionieren sollen, um unter dieser Vorgabe eine möglichst geringe Fläche zu verbrauchen. In einem Artikel vom 21. Juni hatte Andrés Navas diese Frage für eine Gruppe von 4 Personen diskutiert. Wenig überraschend ist das…

In der additiven Zahlentheorie will man zu einer Menge natürlicher Zahlen A und einer festen Anzahl s herausfinden, welche natürlichen Zahlen n sich als Summe von s Elementen aus A zerlegen lassen. Klassisches Beispiel ist die Goldbach-Vermutung: jede gerade Zahl n≠2 soll Summe zweier Primzahlen sein. Hier ist s=2 und die Menge der Primzahlen. (Aus…

Mannigfaltigkeiten sollen Räume sein, die lokal wie der Vektorraum Rn aussehen. Was exakt unter dem Konzept „Mannigfaltigkeit“ zu verstehen ist, wurde im 19. Jahrhundert zunächst von Riemann, später auch von Klein, Betti, Lipschitz, Dyck und anderen diskutiert. Bei Poincaré waren Mannigfaltigkeiten ursprünglich Untermannigfaltigkeiten im euklidischen Raum, später dann Simplizialkomplexe, womit er wohl implizit annahm, dass…

In einem abgeschlossenen Intervall [a,b] hat jede Folge eine konvergente Teilfolge. Das folgt aus dem Satz von Bolzano-Weierstraß und es war den Analytikern seit dem 19. Jahrhundert klar, dass das eine sehr nützliche Eigenschaft des abgeschlossenen Intervalls ist, und allgemeiner auch eine nützliche Eigenschaft abgeschlossener und beschränkter Teilmengen des Rn. Frechet hatte 1905 in seiner…

Vor einigen Wochen hatte ich mal über die Mengenlehre geschrieben, die Anfang der 70er Jahre an deutschen Grundschulen eingeführt worden war. In den Kommentaren hatte es dann zahlreiche, fast durchgängig positive Wortmeldungen von damaligen Betroffenen gegeben, was ich recht überraschend fand. Es ist natürlich möglich, dass die Leserschaft der scienceblogs keine repräsentative Stichprobe der Grundgesamtheit…

Für einen Artikel (in den DMV-Mitteilungen) möchte ich folgendes Zitat verwenden: Die Mengenlehre? Ganz einfach! Wenn in einem Raum drei sind und vier rausgehen, muss einer wieder rein, damit keiner drin ist. Dieses Zitat hört und liest man öfter mal (z.B. bei Philipp Rösler) und wenn man mit Google nach dem Zitat sucht, dann findet…