Egal, wie verschrumpelt eine Sphäre ist, man kann sie wieder rundmachen – das bewies Steven Smale 1957. Das Video “Turning the sphere inside out” (vor 3 Wochen verlinkt) zeigte die Umstülpung der Sphäre, also wie man eine die Sphäre so verformt, dass innen und aussen vertauscht werden. Die Umstülpbarkeit der Sphäre ist natürlich ein Spezialfall…
Ein Grund, warum die im Video letzte Woche beschriebene Umstülpung der Sphäre eine Zeitlang mit Skepsis gesehen wurde ist die Unmöglichkeit einer analogen Verformung für Kurven in der Ebene. Reguläre Kurven in der Ebene können (anders als die Sphären im 3-dimensionalen Raum) nicht immer durch eine reguläre Homotopie ineinander überführt werden. Das Hindernis für eine…
Boy-Flächen, wie wir sie in den letzten Folgen beschrieben hatten, sind zwar seit Beginn des 20. Jahrhunderts bekannt, aber erst seit Ende der 70er hat man analytische Formeln. Die wurden ursprünglich in Zusammenhang mit einem anderen Problem entdeckt, nämlich der Eversion (Umstülpung) der Sphäre, oft popularisiert unter dem Schlagwort “Turning the sphere inside out”. Dabei…
Hamiltonsche Flüsse und Symplektische Geometrie
Wie kann man in Excel Zellen zusammenfügen?
Flächen um Sphären wickeln.
Kreise, Intervalle und Homotopien.
Selbstabbildungen des Torus und SL(2,Z).
Letzte Kommentare