Die klassische Mechanik geht auf Isaac Newton zurück. Er beobachtete, dass sich Körper unter der Wirkung eines Kraftfeldes F gemäß der Differentialgleichung bewegen. Eine allgemeinere Formulierung gelang im 18. Jahrhundert Lagrange, der die Bewegungsgleichungen aus Variationsprinzipien herleiten konnte, also als Euler-Lagrange-Gleichungen eines geeigneten Wirkungsfunktionals. Im 19. Jahrhundert erkannten Hamilton und Jacobi, dass man diese Euler-Lagrange-Gleichungen aus dem Hamilton-Formalismus herleiten kann. Man hat eine Hamilton-Funktion H, zum Beispiel die Summe aus kinetischer und potentieller Energie, und beschreibt dann die Bewegung in Ortskoordinaten qi und Impulskoordinaten pi durch die Differentialgleichungen
. Die Hamilton-Funktion ist eine Konstante der Bewegung für den Fluss dieser Differentialgleichung.
Man kann diesen Formalismus mathematisch so fassen, dass man auf dem Phasenraum R3xR3 die symplektische Form betrachtet und zu einer Funktion H ihren symplektischen Gradienten XH definiert als dasjenige Vektorfeld, für das
ist. (So ein Vektorfeld existiert, weil ω eine nicht-ausgeartete Form ist.) Die Hamilton-Gleichungen beschreiben dann gerade den Fluss des Vektorfeldes XH.
Das kann man genauso machen, wenn der Ortsraum nicht R3, sondern eine Mannigfaltigkeit M ist. In diesem Fall ist der Phasenraum der Kotangentialraum T*M, auf diesem hat man eine kanonische symplektische Form ω und der symplektische Gradient einer Hamilton-Funktion beschreibt wieder den Hamiltonschen Fluss. Die Zeit-t-Abbildung des Flusses ist ein Symplektomorphismus, d.h. ein Diffeomorphismus f mit f*ω=ω.
Man hat symplektische Formen auch auf 2n-dimensionalen Mannigfaltigkeiten, die keine Kotangentialbündel sind, zum Beispiel ist die Volumenform einer Fläche eine symplektische Form oder allgemeiner die Kähler-Form einer Kähler-Mannigfaltigkeit.
Auf einem 2-dimensionalen Torus kann man einen Hamiltonschen Fluss nahe der Identität näherungsweise durch eine erzeugende Funktion H und die Gleichungen X=x+dH/dX(x,y), Y=y-dH/dY(x,y) beschreiben. Die Fixpunkte des Flusses entsprechen den kritischen Punkten von H, von denen es mindestens 3 und im nicht-ausgearteten Fall mindestens 4 geben muß.
Symplektomorphismen des 2n-Torus wurden wohl erstmals 1965 von Wladimir Arnold untersucht (damals noch unter der Bezeichnung „global kanonische Abbildung“): er bewies 1965, dass gewisse Symplektomorphismen des 2n-Torus mindestens 22n Fixpunkte haben und vermutete, dass dies für alle durch Hamiltonsche Flüsse erzeugte Symplektomorphismen des 2n-Torus (mit nicht-ausgearteten Fixpunkten) der Fall sei.
Symplektomorphismen verallgemeinern volumenerhaltende Abbildungen von Flächen. Für n=1, also den 2-Torus, folgt aus Arnolds Vermutung insbesondere „Poincarés letzter geometrischer Satz“, demzufolge eine volumenerhaltende Abbildung des Kreisrings, welche die beiden Randkomponenten in entgegengesetzte Richtungen dreht, mindestens zwei Fixpunkte haben muß. Den 2-Torus bekommt man durch Verkleben zweier Kreisringe und die Bedingung über die entgegengesetzt gedrehten Ränder ist notwendig, damit die Abbildung durch einen Hamiltonschen Fluß entstehen kann. In seinen Arbeiten zum Dreikörperproblem hatte Poincaré festgestellt, dass man die Suche nach periodischen Bahnen in 3-dimensionalen dynamischen Systemen auf die Bestimmung von Fixpunkten einer 2-dimensionalen flächenerhaltenden Abbildung (des Poincaré-Schnitts) zurückführen kann. Seinen „letzten geometrischen Satz“ über die volumen-erhaltenden Abbildungen des Kreisrungs hatte er 1912 formuliert, vollständig bewiesen wurde er dann von Birkhoff.
Symplektische Geometrie hat sich heute etabliert als die universelle geometrische Sprache der klassischen Mechanik, aber sie hat auch enge Verbindungen zu zahlreichen Gebieten innerhalb der Mathematik von Variationsrechnung über Quantisierung oder Darstellungstheorie bis zur mikrolokalen Analysis von Differentialgleichungen. Wladimir Arnold hatte die vereinheitlichende Natur der symplektischen Geometrie früh erkannt und in seinem 1974 (zunächst auf Russisch) erschienenen Lehrbuch “Mathematische Methoden der klassischen Mechanik” einen Paradigmenwechsel vollzogen. Statt des traditionellen analytischen Zuganges zur theoretischen Mechanik verwendete es Ansätze der modernen Mathematik wie Lie-Gruppen, Differentialformen und Symplektomorphismen. Arnold popularisierte auch die symplektische Topologie, die ihre wesentlichen Anstöße von einem einzelnen Problem bekam, der von ihm 1974 in ihrer Allgemeinheit formulierten Arnold-Vermutung: ein durch einen Hamiltonschen Fluss zur Identitätsabbildung homotoper Symplektomorphismus (d.h. ein Symplektomorphismus, der die Zeit-1-Abbildung eines Hamiltonschen Flusses ist) soll mindestens soviele Fixpunkte haben, wie die Summe der Dimensionen der Homologiegruppen der zugrundeliegenden symplektischen Mannigfaltigkeit angibt. (Unter der generisch erfüllten Voraussetzung, dass alle Fixpunkte nicht-ausgeartet sind.) Das verallgemeinert seine ursprüngliche Vermutung für 2n-Tori und es ist eine sehr viel stärkere Aussage als der Lefschetzsche Fixpunktsatz, demzufolge in der stetigen Kategorie Abbildungen, welche homotop zur Identität sind, mindestens soviele Fixpunkte haben wie die Euler-Charakteristik der zugrundeliegenden Mannigfaltigkeit (also die Wechselsumme über die Dimensionen der Homologiegruppen) angibt.
Kommentare (5)