Die Lösung der linearen Differentialgleichung x‘(t)=Ax(t) im Rn mit einer nxn-Matrix A ist bekanntlich x(t)=etAx(0), wobei das Matrixexponential etA definiert ist als die Reihe . (Matrizen können addiert und miteinander und mit Skalaren multipliziert werden, was zunächst Polynome von Matrizen definiert. Es ist dann nicht schwer zu zeigen, dass die Matrizenfolge konvergiert.) Dagegen läßt sich…

Vaughan Jones, Entdecker des nach ihm benannten Knotenpolynoms, ist gestern überraschend in Neuseeland verstorben. Jones war eigentlich kein Knotentheoretiker, sondern arbeitete über von-Neumann-Algebren. Die Algebra der beschränkten linearen Operatoren auf dem Hilbert-Raum ist eine *-Algebra, wobei der Stern jedem Operator A den adjungierten Operator A* zuordnet. Man interessiert sich für die schwach abgeschlossenen Unteralgebren dieser…

Der indische Mathematiker Ramanujan war bekannt für seinen auf Formeln (statt Beweise) fixierten Stil, den er sich als Jugendlicher bei der Lektüre eines zur Prüfungsvorbereitung gedachten Buches mit vielen Formeln und wenigen Beweisen angeeignet haben soll. Wer schon immer mal wissen wollte, wie dieses Buch aussah und welche Inhalte vorkommen, bekommt dies in wenigen Minuten…

Viele Gleichungen lassen sich nicht exakt lösen, so dass man numerische Verfahren benötigt. Klassisch ist das Newton–Verfahren zur Lösung der Gleichung F(x)=0: mit der Rekursion soll eine Lösung von F(x)=0 approximiert werden. Man weiß dabei natürlich nicht, ob, wie schnell und gegen welche Lösung das Verfahren konvergiert. Dafür muss man verstehen, gegen welche Häufungspunkte die…

Die Maxwell-Gleichungen beschreiben die Phänomene des Elektromagnetismus, man formuliert sie elegant mit Hilfe der Operatoren div, grad, rot aus der Vektoranalyis. Beispielsweise beschreibt die Quellen des elektrischen Feldes und die Wirbel des Magnetfeldes. Die drei Operatoren der Vektoranalyis lassen sich mittels des folgenden kommutativen Diagramms alle als Spezialfälle des äußeren Differentials auf Differentialformen interpretieren, wobei…

3Blue1Brown hat ein neues Video Group Theory and why I love 808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000 (unter Mithilfe von Richard Borcherds). Es geht um Gruppen und wo sie überall vorkommen in Algebra, Geometrie, Physik, um die Klassifikation endlicher Gruppen und schließlich um die Monster-Gruppe und die Mondschein-Vermutung.

Die Riemannsche Zetafunktion ist die analytische Fortsetzung der für Re(s)>1 durch definierten Funktion. Sie kodiert die Verteilung der Primzahlen: der Primzahlsatz folgt aus der für alle Nullstellen gültigen Ungleichung Re(s)

Bernhard Riemann hat die später nach ihm benannten Riemannschen Flächen 1851 in seiner Dissertation als natürliche Definitionsbereiche mehrwertiger holomorpher Funktionen eingeführt. Er veranschaulichte sie als verzweigte Überlagerungen über der projektiven Gerade CP1. In seiner Arbeit über abelsche Funktionen 1857 fragte er nach der birationalen Klassifikation komplexer Kurven – das ist äquivalent zur Klassifikation Riemannscher Flächen…

Die Laplace-Gleichung Δu=0 im R3 beschreibt in der Physik das elektrostatische Potential im ladungsfreien Raum. Die Lösungen dieser Gleichung (auf einem beliebigen Rn) heißen harmonische Funktionen. Die harmonischen Funktionen auf dem R2 sind in der Funktionentheorie von Bedeutung, etwa beim Beweis des Riemannschen Abbildungssatzes. Die Real- und Imaginärteile komplex differenzierbarer Funktionen sind harmonisch und umgekehrt…

Coronabedingt soll man heuer einen Mindestabstand von d=1,5 Metern einhalten. Für den Mathematiker wirft das die Frage auf, wie sich Menschen positionieren sollen, um unter dieser Vorgabe eine möglichst geringe Fläche zu verbrauchen. In einem Artikel vom 21. Juni hatte Andrés Navas diese Frage für eine Gruppe von 4 Personen diskutiert. Wenig überraschend ist das…