Gruppentheorie entstand ursprünglich aus der Frage nach der Auflösbarkeit von Polynomgleichungen durch Wurzelausdrücke. Évariste Galois betrachtete im 19. Jahrhundert (mit einer komplizierten Definition) zu einem Polynom mit Nullstellen α1,…αn die Gruppe derjenigen Vertauschungen der Nullstellen, die alle „Relationen“ zwischen den Nullstellen erhalten. In heutigem Verständnis ist das die Galois-Gruppe G=Gal(Q(α1,…αn)/Q) derjenigen Körperhomomorphismen der durch Adjunktion…

Die Klassifikation der Flächen ist seit dem 19. Jahrhundert bekannt, auch wenn ein vollständiger Beweis erst Radó 1925 (aufbauend auf Dehn und Heegaard) gelang. Darüber hinaus war bis in die 50er Jahre zur Klassifikation der Mannigfaltigkeiten kaum etwas bekannt. In Dimension 3 waren in den 30er Jahren die Seifert-Faserungen klassifiziert worden und für Haken-Mannigfaltigkeiten konnte…

Der Riemannsche Abbildungssatz besagt, dass man jedes einfach zusammenhängende Gebiet konform auf die Einheitskreisscheibe abbilden kann. Der 1960 von Ahlfors und Bers bewiesene meßbare Riemannsche Abbildungssatz besagt, dass man für jede durch 1 beschränkte, meßbare Funktion μ eine Lösung der Differentialgleichung findet, dass diese Lösung eindeutig ist, sobald man die Bilder dreier Punkte festlegt, und…

Auf Martin Eichler geht das Bonmot zurück, Modulformen seien die fünfte Grundrechenart nach Addition, Subtraktion, Multiplikation und Division. Schon im 19. Jahrhundert wußte man um die Anwendungen von Modulformen in der Zahlentheorie. So sind die Anzahlen der ganzzahligen Lösungen einer quadratischen Gleichung Koeffizienten einer Modulform, der Beweis von Jacobis Vierquadratesatz folgt aus der Identität zweier…

In der Funktionentheorie interessiert man sich für die Bestimmung von Funktionen mit vorgegebenen Pol- und Nullstellen. Gegeben eine Menge von Punkten x mit zugeordneten ganzzahligen dx (einen „Divisor“ D) auf einer Riemannschen Fläche möchte man die Dimension l(D) des C-Vektorraums L(D) aller derjenigen meromorphen Funktionen, die in den Punkten mit höchstens eine Polstelle der Ordnung…

SWR Wissen2 hatte vorletzten Freitag eine Sendung über Sofia Kowalewskaja, auf die unter anderem die Lösung der Kreiselgleichung (durch Auffinden hinreichend vieler Erhaltungsgrößen) zurückgeht. Das Manuskript zur Sendung ist hier.

„structural color is based on reflection, not absorption“ Im neuen Numberphile-Video erklärt Sabetta Matsumoto die Geometrie der „strukturellen Färbungen“ von Schmetterlingsflügeln und Gyroiden.

Die Bott-Periodizität gilt heute als einer der zentralen Sätze der reinen Mathematik mit Verzweigungen in unterschiedliche Gebiete. Ihren Ursprung hatte sie aber ursprünglich in der Problemstellung, die Homotopiegruppen von Lie-Gruppen zu berechnen. In den 1950er Jahren hatte man bereits erkannt, dass die Berechnung der Homotopiegruppen selbst von Sphären sehr schwierig ist. Man hat zwar die…

Die Poissonsche Summenformel für schnell fallende -Funktionen f hat zahlreiche Anwendungen in Zahlentheorie und Analysis, beispielsweise beim Beweis der Transformationsformel der Theta-Funktion oder für gewisse Reihenentwicklungen. Man kann sie geometrisch interpretieren, indem man sieht, dass auf dem Kreis S1=R/Z die natürlichen Zahlen die Längen der geschlossenen Geodäten sind und die Zahlen -(2πk)2 die Eigenwerte des…

Garbentheorie ist ein in den 40er Jahren von Leray ursprünglich in analytischem Kontext eingeführter Ansatz, der zunächst die Funktionentheorie mehrerer komplexer Veränderlicher komplett umgekrempelt hatte. Jean-Pierre Serre und Henri Cartan konnten einige Hauptresultate der Funktionentheorie mehrerer Veränderlicher mittels Garbentheorie reformulieren und verallgemeinern. Zum Beispiel konnten sie beweisen, dass die von Stein als Verallgemeinerung der Holomorphiegebiete…