퀴 스 너 틸 로 wohnt nicht mehr in Seoul, sondern jetzt in Augsburg. Er interessiert sich für Mathematik und besonders für geometrische Topologie.

Vor einigen Wochen hatte ich mal über die Mengenlehre geschrieben, die Anfang der 70er Jahre an deutschen Grundschulen eingeführt worden war. In den Kommentaren hatte es dann zahlreiche, fast durchgängig positive Wortmeldungen von damaligen Betroffenen gegeben, was ich recht überraschend fand. Es ist natürlich möglich, dass die Leserschaft der scienceblogs keine repräsentative Stichprobe der Grundgesamtheit…

Für einen Artikel (in den DMV-Mitteilungen) möchte ich folgendes Zitat verwenden: Die Mengenlehre? Ganz einfach! Wenn in einem Raum drei sind und vier rausgehen, muss einer wieder rein, damit keiner drin ist. Dieses Zitat hört und liest man öfter mal (z.B. bei Philipp Rösler) und wenn man mit Google nach dem Zitat sucht, dann findet…

Viele Differentialgleichungen lassen sich mit dem Ansatz lösen, die gesuchte Funktion in Schwingungen (periodische Funktionen) unterschiedlicher Frequenz zu zerlegen. Diese Methode heißt Fourier-Analyse: man schreibt eine 2π-periodische Funktion F(x) als F(x)=f(eix), also als Funktion f:S1—->C, und entwickelt sie in eine Fourier-Reihe f(eix)= Σ aneinx (oder äquivalent in eine Reihe mit Summanden cos(nx) und sin(nx)). Die…

Die Lyrikerin Elke Erb erhält den diesjährigen Büchner-Preis. Ein typisches und vielleicht nicht so bekanntes Werk aus dem Jahr 1980: Bewegung und Stillstand Kommt man mit der S-Bahn von Kaulsdorf über Mahlsdorf und Biesdorf nach Friedrichsfelde-Ost, sieht man zwischen Biesdorf und Friedrichsfelde-Ost links immer diese Neubauten, aus deren Hunderten Fenstern man die S-Bahn zwischen Biesdorf…

Mit statistischen Tests soll eine Nullhypothese H0 (etwa: ein Medikament wirkt nicht besser als ein Placebo) getestet werden. Man hat eine Menge X von möglichen Ereignissen, die durch den Test zerlegen werden soll in zwei Teilmengen: den Verwerfungsbereich A – wo die Nullhypothese abgelehnt wird – und dessen Komplement, wo die Nullhypothese als bestätigt gilt.…

Zwei Diskussionen bei Mathoverflow (Are categories special, foundationally? und Category theory and set theory: just a different language, or different foundation of mathematics?) werfen wieder einmal die Frage nach den „richtigen“ Grundlagen für die Mathematik auf: sollte die Axiomatik der Mathematik auf der Mengenlehre oder auf der Kategorientheorie aufbauen? Es gibt dort eine Reihe interessanter…

Gestern und vergangenen Freitag lief im ZDF die Serie „Deutscher“, in der es (kurz gesagt) darum ging, wie eine Regierungsbeteiligung einer populistischen Partei die Atmosphäre in einem Land auch schon ganz ohne neue Gesetze und Maßnahmen ändern kann. Eines der Elemente im Film war dabei eine (nicht von der neuen Regierung, sondern dem plötzlich seine…

Noch in den 1920er Jahren bestand der Inhalt einer Algebra-Vorlesung aus „konkreter“ Mathematik: Determinanten, symmetrische Funktionen und Resultanten, der Trägheitsindex einer reellen quadratischen Form, die Lösung kubischer und biquadratischer Gleichungen, die Sturmsche Regel zur Anzahl reeller Nullstellen eines Polynoms, projektive Geometrie (Erzeugung der Kegelschnitte durch zwei Geradenbüschel), und abzählende Geometrie (z.B. die Anzahl von Kegelschnitten…

Ein zentrales Postulat der kinetischen Gastheorie ist seit Boltzmann die Ergodenhypothese: thermodynamische Systeme verhalten sich völlig zufällig, alle energetisch möglichen Phasenraum-Regionen werden erreicht und die Trajektorie verbringt auf lange Sicht anteilig genausoviel Zeit in einer Region des Phasenraums wie es dem Anteil des Volumens dieser Region am gesamten Phasenraum entspricht. Mathematisch geht es um einen…

xkcd versucht Zusammenhänge zwischen den Millenium–Problemen zu konstruieren: Die Millennium–Probleme sind sieben berühmte mathematische Probleme, auf deren Lösung das Clay–Institut im Jahr 2000 jeweils 1 Million Dollar ausgesetzt hatte. Das einzige bisher gelöste ist die Poincaré–Vermutung, für die Perelman das Preisgeld aber nicht angenommen hat. (Es wurde dann für Stipendien gestiftet.) Ich muß zugeben, dass…