Die in Teil 1: “Vor 125.000 Jahren waren Pottwale fast ausgestorben – nur 10.000 hatten überlebt” vorgestellten Publikationen sind molekularbiologisch sicherlich exzellent, aber mir fehlt der interdisziplinäre Kontext. Bei der Frage nach dem Warum bleiben sie im Vagen und nennen generell eine Klimaveränderung.
Hier möchte ich darstellen, was genau eine solche Erwärmung bedeutet – exemplarisch am arktischen Nahrungsnetz. Erst mit der Kenntnis der komplexen biologischen Kenntnisse wird klar, wieso einige Grad Erwärmung ganze Ökosysteme stören und möglicherweise sogar Walsterben initiieren können.
Die Pottwal-Katastrophe vor etwa 125.000 Jahren fällt in das Mittel-Pleistozän.
In exakt diesem Zeitraum zeigen Eisbohrkenne aus Grönland und der Antarktis einen gewaltigen Ausschlag nach oben – eine abrupte Erwärmung!
Was genau diesen Klimaevent hervorgerufen hat und wie warm genau die Meere damals wurden, vermag ich nicht zu beurteilen, ich bin keine Klimatologin.
Für das Ergebnis ist es unerheblich. Fest steht, dass der genetische Flaschenhals der Leviathan durch einen Klimaevent am wahrscheinlichsten und schlüssigsten zu erklären ist.
Aber rapide Klimaveränderungen führen immer zu tiefgreifenden Veränderungen in Ökosystemen – Jahrtausende oder Jahrhunderte sind ein zu geringer Zeitraum für eine Anpassung.
Was genau passiert, wenn ein Ozean wärmer wird?
Bei einer Ozeanerwärmung verschiebt sich die wichtige Frühjahrsalgenblüte nach vorn: Im Frühjahr kommt es durch das zunehmende Sonnenlicht und die zunehmende Temperatur zu einer plötzlichen starken Algenblüte.
In den arktischen und antarktischen Ozeanen ist dieser Vorgang besonders stark: Über den dunklen Winter wachsen Algen kaum, so bleiben die Nährstoffe im Meer ungenutzt.
Wenn dann wieder Licht für die Photosynthese vorhanden ist und die Temperaturen steigen, hat das Phytoplankton einen reich gedeckten „Tisch“. Ein besonders wichtiger Teil des Phytoplanktons sind die Eisalgen, die auf der Unterseite des Meereises wachsen.
Diese Primärproduktion ist der jährliche Startschuss für fast alle Nahrungsnetze im Ozean. Zeitlich versetzt folgt dann ein Wachstumsboom aller anderen trophischen Stufen: Pflanzliches Plankton – Tierisches Plankton – Fische, Tintenfische – Wale, große Fische. Sowie die Pflanzen die Nährstoffe im Meer ausgeschöpft haben, schwächt die erste Algenblüte ab.
Das ozeanische Nahrungsnetz ist fein abgestimmt: Fische laichen so ab, dass ihre Larven pünktlich zur Phytoplanktonblüte schlüpfen – so sind die Jungfische mit genügend Babynahrung versorgt. Findet die erste Planktonblüte plötzlich früher statt, finden die Fischlarven nur noch Reste davon vor. Ohne genügend Nahrung wachsen sie nicht gut oder verhungern sogar. Diese Hungerwelle setzt sich über alle Bereiche der ozeanischen Nahrungsnetze fort.
Höhere Wassertemperaturen können das Meereis dünner werden lassen, dann bekommen die Eisalgen mehr Licht
und ihr Wachstum fällt noch stärker aus. Es endet allerdings auch früher.
Bei noch weiterer Erwärmung taut das Eis, die Eiskante weicht weiter nach Norden zurück – ohne Eis gibt es keine Eisalgen, die Primärproduktion des Ozeans fällt dann wesentlich geringer aus.
Höhere Wassertemperaturen begünstigen auch andere Algen und andere Einzeller wie die giftigen Dinoflagellaten, die die Rote Flut verursachen – die potenten Algentoxine haben bereits mehrfach schlagartig Hunderte von Delphinen und Großwalen (und andere Meerestiere) getötet. Sie fügen auch Aquakulturen schwere Schäden zu.
Weiterhin bedeutet wärmeres Wasser auch weniger Sauerstoffgehalt im Ozean, so dass Meerestiere ersticken oder abwandern können.
Zusätzlich kann es zu noch größeren ozeanographischen Veränderungen kommen: Durch andere Temperaturgradienten kann sich die Schichtung der Wasserschichten ändern, dadurch können letztendlich sogar große ozeanische Strömungen umgelenkt oder gestoppt werden – ein Beispiel dafür ist die nordatlantische Oszillation.
Kommentare (7)